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The accuracy of extrapolation procedures in conjunction with energy-based 
configuration selection in CI calculations is examined. The normally high 
accuracy of such extrapolation can deteriorate in multireference (2I cal- 
culations when configuration functions of low weight are included in the root 
(reference) set. This is due to the inadequacy of second-order  energy contri- 
bution estimates for the very large number  of discarded low-contribution 
functions generated as single and double excitations f rom the minor members  
of the root set. The problem may be overcome by increasing the number  of 
configurations included in the zero-order  function used for the energy contri- 
bution estimation process. Illustrative results are presented for excited states 
of the H 2 0  molecule and the H 2 0  + ion. 

Key words: Configuration in te rac t ion-  Selection of conf igurat ions-  Energy 
extrapolation. 

1. Introduction 

The configuration interaction (CI) method [1] has become a standard tool for the 
evaluation of correlated electronic wave functions and energies of molecular 
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systems within a variational framework. A major advantage of this method is its 
generality, enabling consistent treatments of different electronic states and 
different regions of potential energy surfaces. Its principal limitation is the slow 
covergence of the CI wave function expansion, requiring a very large number of 
terms (often as many as 104-105 or more for satisfactory accuracy, even for fairly 
small molecules. 

This slow convergence has led to the increasing use of configuration selection 
techniques [1-11], in which individual terms (configuration functions, or CF's) are 
selected for inclusion in the wave function expansion by an automatic procedure 
on the basis of appropriate estimates of the magnitude of their expected contribu- 
tions to the solution. An important contribution to the effectiveness of such 
methods has been the introduction of an extrapolation technique by Buenker and 
Peyerimhoff [9, 12, 13]. This technique makes it possible to account for the effect 
on the energy of many more configuration functions than can actually be included 
in the (21 expansion, and is thus a very useful tool for increasing the accuracy and 
reliability of quantum chemical calculations. 

The present contribution describes some tests of the accuracy of the Buenker -  
Peyerimhoff (BP) extrapolation procedure, and discusses some cases in which 
such extrapolation is somewhat less accurate than otherwise expected. It is not 
intended as a criticism of the BP procedure,  which has been found to be extremely 
useful, but merely to note certain situations which require extra caution if highly 
accurate results are to be obtained. 

2. Configuration Selection 

In general, the selection of configuration functions (CF's) for inclusion in a CI 
expansion consists of two stages [1]. In the first stage, which may be called 
preselection, a certain class of CF's is chosen as potentially significant, and in the 
second, which may be called screening or individual selection, the members of that 
class are tested individually according to some criterion, and are either accepted 
or rejected for the final CF list. 

The most typical and generally useful form of preselection is based on the choice 
of a set of " roo t"  or " reference"  configuration functions [1, 6, 9-11, 13], with the 
candidates for final selection being all single and double excitations (SD) relative 
to the root set, i.e. all CF's which differ by at most two orbitals from at least one of 
the root CF's. The root set consists of one or more CF's which are judged to be the 
principal contributors to the wave function, and their choice is often refined on the 
basis of subsequent tests [10]. Particularly important in calculations of potential 
energy surfaces and in simultaneous calculations of several states of the same 
symmetry and spin species [10, 11] is to choose a root set which provides a 
balanced zero-order  description of the several states under consideration and of 
the different regions of the potential surface, including proper  description of 
dissociation processes. 



Accuracy of Energy Extrapolation 83 

The final screening (individual selection) can be carried out in several ways [1-11], 
generally depending on some estimate of the energy contribution of each CF in 
the final CI wave function, this estimate being based in most cases on perturbation 
theory (PT) ideas. Given some normalized zero-order wave function constructed 
from a "primary set" of CF's (which often is, but need not be, the same as the root 
set), 

k 
XI/0= E air'i, (1) 

i=1 

a perturbation theory estimate of the energy contribution ej of a CF qbj (j > k) can 
be obtained from 

~; = [H,-o[2/(Eo- Ej), (2) 

where 

k 

/-/1o = (Oj]/-I]~o) = Y. /-/jia,- (j > k), 
i=1 

Hq = (Oi]/-l]Oi) (i, j = 1, 2 . . . .  ), 

Ej = ~ j ,  
k k 

Eo=(~oIgr]~t'o) = Z Z a~I-Iijai, (3) 
i=l j= l  

and it has been assumed that the CF's are orthonormal, 

(O,]O1) = &i (i, j = 1, 2 . . . .  ). 

The coefficients ai and the zero-order energy E0 can be obtained as an eigenvector 
and corresponding eigenvalue of the primary Hamiltonian matrix of order k, 

k 
Z t-Iqaj = Eoa, (i = 1, 2 . . . . .  k). (4) 

j=1 

This procedure has been referred to as "Ak"  by Gershgorn and Shavitt [1, 5], and 
is essentially the same as that used by several other investigators to obtain energy 
contribution estimates [3, 6, 10, 11]. In calculations involving more than one state 
of a given symmetry and spin species, this procedure provides energy contribution 
estimates for each state separately by using an appropriate eigenvector of Eq. (4) 
as the corresponding zero-order function for each state [1, 10, 11]. 

Buenker and Peyerimhoff [9] have employed a somewhat different scheme for 
estimating energy contributions, in which a separate secular equation of order 
k + 1 is solved for each secondary CF. This equation involves the k primary CF's 
plus the one secondary function under consideration, and the energy contribution 
is taken as the difference between the eigenvalue obtained and the corresponding 
zero-order eigenvalue Eo. There is little extra work involved in this procedure 
(compared to the A k  scheme), since the primary block (of order k) has been 
prediagonalized at the outset, but the results are not expected to differ 
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significantly from those of the Ak procedure described above. (The two methods 
give identical results for k = 1.) 

The actual selection is usually determined by a pre-chosen threshold value T, with 
each CF being retained or rejected depending on whether the magnitude of its 
estimated energy contribution exceeds, or does not exceed, the value of T, 
respectively. (For a different approach see Raffenetti et al. [11].) 

In the present work, as in some of the work of Davidson and co-workers [7, 14] 
and of Buenker and Peyerimhoff, selection is carried out by "spin blocks", with an 
entire spin block being selected or rejected as a unit depending on its combined 
energy contribution. The term spin block refers to a set of CF's which are 
constructed from the same orbital product ("space configuration"), multiplied by 
different members of a set of spin eigenfunctions and antisymmetrized. The spin 
eigenfunctions are all those which can be combined with the given orbital product 
to produce a set of orthonormal and antisymmetric CF's of the desired spin 
species. 

Labeling each CF ~ by two indices, s and v, which identify the orbital product 
and spin function, respectively, the combined spin block energy contribution is 
estimated in this work as [7] 

= E (5) 
v 

where/~ is the average of the energies E~, over the spin block. A spin block is 
retained if its combined energy contribution estimate es exceeds the threshold T. 

Selection by spin block is not quite optimal, since it often includes complete spin 
blocks of which only a fraction of the members have significant energy contribu- 
tions [8, 15], but this is not expected to affect the conclusions to be described 
below. This approach was used because it was the most feasible for the set of CI 
programs (developed by E. R. Davidson and co-workers at the University of 
Washington) which were employed in this work. 

3. Extrapolation 

Rather than simply truncating the CI expansion on the basis of a fixed selection 
threshold T, Buenker and Peyerimhoff [9, 12] (BP) have proposed extrapolating 
the CI energy to T -- 0 on the basis of a series of truncations at different levels, T1, 
T2 . . . .  This extrapolation is facilatated by considering the family of curves 

E~ ( T) = E(  T) + A hEr(T), (6) 

where 

AEr(T) = Y, e~, (7) 
sE{r(T)} 

the sum being over the set of all CF's (or spin blocks) {r(T)} rejected at threshold 
level T. If AE~(T) were to provide an accurate estimate of the truncation error 
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(the true total energy contribution of the rejected CF's), then the A = 1 curve 
would be a straight horizontal line at E(0), the correct zero-threshold energy. In 
actual practice this line is not quite horizontal, and usually not quite straight, but a 
plot of Ea (T) curves for several values of A facilitates a fairly accurate graphical 
extrapolation [12] to T = 0. 

An alternative graphical extrapolation can however be performed, using a single 
curve, by plotting E (T)  vs. A E  r (T).  Again, if AE r (T) is an accurate estimate of the 
truncation error, then the proposed plot would be a straight line with unit slope. In 
actual fact the line is not quite straight and deviates from unit slope, but 
extrapolation to T -- 0 is fairly easy if no pathological behavior is found near the 
T = 0 limit (as discussed further below). 

Another extrapolation method has been employed by Langhoff and Davidson 
[14], based on the assumption that the fractional error made in estimating the 
energy contribution of the rejected CF's by AEr(T) is the same as in the 
corresponding estimate 

AE ~  E e~ (8) 
s~{a(T)} 

for a set {a(T)} of accepted CF's. The resulting extrapolated energy E(~  0) is 

E(-> O) = E ( T )  + [E(T) -Eo]AEr(T)/AE a (T) ,  (9) 

E0 being the reference energy. This is not unrelated to the BP extrapolation 
approach, and is essentially equivalent to the assumption that for some value of A, 
given by 

A = [ E  (T )  - E o ] / A E  a ( T ) ,  (10)  

The Ex (T) curve is a horizontal straight line. However, the BP approach basedon 
Eq. (6) is more general, since it allows for some variation in the ratio on the r.h.s. 
of Eq. (10), and takes that variation into account in the extrapolation. 

Buenker and Peyerimhoff indicate that by using a minimum threshold of T = 
20 p.hartree, the value of E(0) can be estimated in their approach with an 
uncertainty of 0.5 m hartree or less [16]. Somewhat larger errors are expected for 
larger systems [17]. 

4. Calculations 

4.1. Extrapolation tests on H e 0  

In order to verify that the effects described in the next subsection are not a result of 
any differences in the details of the extrapolation procedure compared to the 
procedures used by BP, the calculations on the 3B2 excited state of H20 reported 
by Buenker and Peyerimhoff [12, 16] were repeated with the selection procedures 
based on Eq. (5). An additional objective in repeating these calculations was to 
test the extrapolation based on a plot of E (T)  vs. A E  r (T)  described in the previous 
section. 
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In these calculations, the molecular geometry and Gaussian lobe basis set 
were chosen to be the same as those in Ref. [16]. The orbitals used in the CI 
calculations were the canonical SCF orbitals computed for the 
(laO2(2al)2(lb2)2(3aOl(lbO2(2b2)1(3Bz) configuration of H20. The root and 
primary set consisted of just the SCF configuration (k = 1), and the preselected CF 
list consisted of all single and double excitations which kept the (1 a 1) 2 core orbital 
doubly occupied and its high-energy 1 l a l  complement unoccupied, just as in the 
BP work [12, 16]. This produced a list of 2151 CF's (for T = 0). The BP-type 
extrapolation plots obtained from calculations at several threshold values are 
shown in Fig. 1. They are fairly smooth, and can be extrapolated from T = 20 or 
10 txhartree with an accuracy of 0.1-0.2 mhartree. The extrapolated result based 
on T = 4 0 ,  20, 10 or 20, 10, 5 txhartree is E ( ~ 0 ) = - 7 5 . 7 8 5 6 + 0 . 0 0 0 1  hartree, 
compared with the exact T(0) = -75.785634 hartree. (This T(0) value is about 
0.9 mhartree lower than the BP value, probably because of some minor 
differences in the basis set data, such as in the Gaussian lobe representation of the 
d functions.) 

While Fig. 1 is qualitatively similar to the corresponding Fig. 3 of BP [12], there 
are quantitative differences which are traceable to the use of spin-block selection 
in the present work. As a result, the size of the secular equation solved at each T 
value (other than T = 0) is larger than that of BP, and the ;t = 0 curve is less steep. 
The value of A" which produces a nearly horizontal curve at small T is A = 0.97, 
compared to 0.838 for BP, indicating that the retention of entire spin blocks on 
the basis of the energy contribution formula of Eq. (5) leads to truncation error 
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Fig. 1. Extrapolation curves Ex(T) 
for the 3B 2 state of the water mole- 
cule. Both the root set and primary 
set consisted of just the SCF 
configuration. The numbers in 
parentheses are the dimensions of 
the secular equations solved at the 
corresponding threshold values T. 
The unselected expansion contained 
2151 terms 
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estimates AEr(T) which were closer (at least in this example) to the true 
truncation error than in the BP procedure. This was done, however, at the cost of 
solving larger secular equations. The principal conclusion from the comparison is 
that the extrapolation procedure used here, based on perturbation theory energy 
contribution estimates and entire spin block selection, gives results quite similar to 
those of the BP procedure, and that the difficulties in the extrapolation behavior 
described in the next subsection cannot be due to the differences in these 
procedures. 

The alternative extrapolation plot of E ( T )  vs. AE ~ (T) is shown for this example in 
Fig. 2. The points are seen to lie fairly close to the dashed line, which is the unit 
slope straight line through E(0). A least squares line fitted to the T -- 40, 20, 10 or 
20, 10, 5 izhartree data gives an extrapolated result with an error less than 
0.1 mhartree, quite similar to the case of the BP-type plots of Fig. 1. 

The principal difference between the calculations described above and those to be 
described in the next subsection is in the size of the root set. To verify the 
assumption that this aspect of the calculation is related to the problems discussed 
below, another set of calculations was carried out for the 3B 2 state of H20 
using two configuration functions (k =2) in the root and primary set. The 
second configuration (coefficient -0.04 in the CI expansion) was 
(lal)2(2al)2(1b2)E(3al)l(2bE)l(3bl) 2. In this case the preselected list contained 
4017 CF's, and yielded an unselected energy of E(0) -- -75.786620 hartree. The 
extrapolation curves for this case are shown in Fig. 3, and are seen to have a fairly 
steep drop in E ( T )  close to T -- 0, making extrapolation less accurate than in the 
above example. This is indeed symptomatic of the problems described below for 
H E 0  +. 

4.2. Multireference extrapolations for H 2 0  + 
The problems described in this subsection were encountered in a study [18] on 
potential energy surface crossings in H20 +. The two surfaces involved are those 
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Fig. 3. Same as Fig. 1, but with two 
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energy contributions smaller than 
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for the 12A1 and lZB2 states, which interact and mix upon asymmetric distortion 
of the ion. The calculations described here are limited to the symmetric (C2~) 
geometries of H20 +, but the choices of orbitals and root sets were dictated by the 
needs of the surface crossing study. 

The basis set used was a Dunning [19] double zeta contraction of the Huzinaga 
[20] (9s5p) basis for oxygen and (4s) basis for hydrogen (with a scale factor [19] of 
�9 t = 1.275). A full set (five) of d polarization functions on oxygen (with exponent 
0.85) and a set of p functions on each hydrogen atom (exponent 1.0) were 
added [21]. An initial set of orbitals was obtained by solving the open 
shell SCF equations by Davidson's method [22] for either the 
12Al(laO2(2al)Z(lbz)2(3aO~(lbO 2 or the 12B2 (laO2(2al)2(lb2)l(3aO2(lbO 2 
state (the choice of which SCF configuration to use was based on considerations 
having to do with the overall potential surface study [18]). The orbitals were 
obtained in Davidson's "internally consistent" SCF form [23]. A small CI 
calculation (about 400-500 CF's) was then carried out in the Bk approximation 
[5] (i.e. ignoring all off-diagonal matrix elements which do not involve any of the 
primary set configurations), in order to obtain approximate natural orbitals for the 
same state as that of the SCF calculation [24]. The inner shell laa orbital was 
constrained to contain two electrons in all the subsequent treatments, and its 
high-energy counterpart 12a~ was discarded. Using these orbitals and the root 
sets of 6 (for 2A1) and 9 (for ZB2) CF's listed in Table 1, preselected configuration 
lists were generated for the two states, containing 6182 and 8186 CF's, respec- 
tively. 
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Table 1. Root configurations and dimensions of the preselected configuration lists for the 12A1 and 
12B2 states of the H20 + ion 

Preselected list dimension 

Spatial Spin-adapted 
Root configurations a configurations CF's 

1. State l Z A x  2085 6182 
. . .  ( l b z ) 2 ( 3 a l ) l ( 1 b l )  a 

. . .  ( l b e ) 1 ( 3 a l ) l ( l b l ) 2 ( 2 b 2 )  I 

. . .  ( l b 2 ) 2 ( 3 a l ) Z ( 4 a l )  1 

�9 . .  ( 3 a l ) 2 ( l b l ) 2 ( 4 a l )  1 

�9 . .  ( l b 2 ) 2 ( 3 a O l ( 4 a l )  2 

2. State 12Bz 1776 8186 
�9 . .  ( l b z ) X ( 3 a l ) 2 ( l b l )  2 

. . .  ( l b z ) l ( l b 1 ) a ( 4 a l )  2 

�9 . .  ( l b z ) l ( 3 a l ) I ( l b l ) Z ( 4 a l )  1 

�9 . .  ( l b z ) a ( 3 a a ) l ( l b l ) a ( 4 a l ) a ( 2 b l )  1 

The la l  and 2al orbitals are doubly occupied in all the root configurations, and are indicated by the 
ellipsis (. �9 .). The five and four "spatial" root configurations for the 12A 1 and 12B2 states give rise to 6 
and 9 CF's, respectively, when all appropriate spin couplings are applied. 

Se l ec t ions  w e r e  t h e n  ca r r i ed  o u t  at  a r a n g e  of th resho lds ,  u s ing  the  e n e r g y  

c o n t r i b u t i o n  e s t i ma t e s  of  Eq .  (5), for  the  e l ec t ron i c  s ta tes  a n d  g e o m e t r i e s  l i s ted  in  

T a b l e  2. T h e  p r i m a r y  set  u sed  in the  se l ec t ion  p rocess  (see Eqs .  (1, 3, 5)) in  these  
ca l cu l a t i ons  was  iden t i ca l  to the  roo t  set.  B o t h  se lec ted  a n d  u n s e l e c t e d  ( T  = 0) CI  

ca l cu l a t i ons  w e r e  ca r r i ed  out ,  a n d  g raph ica l  e x t r a p o l a t i o n ,  u s ing  the  B P  t e c h n i q u e  
wi th  t h r e s h o l d s  of 20,  10, a n d  5 i~har t ree ,  was  also d o n e .  T h e  ze ro  t h r e s h o l d  
resu l t s  a n d  the  e x t r a p o l a t i o n  e r ro rs  a re  l is ted in T a b l e  2. I t  is s e e n  tha t  e v e n  

Table 2. Extrapolation errors for several geometries and electronic states for the H2 O+ ion 
(in C2v symmetry) a 

HOH OH NO's Extrapolation 
angle distance from E(0) error 

Case (degrees) (bohrs) State state (hartrees) (mhartrees) 

1 60.0 2.20 2A 1 2B2 -75.5560 +1.5 
2 55.2 2.15 2B 2 2B 2 -75.6371 +1.8 
3 104.52 1.8088 2 A  1 Z B  2 -75.7139 +1.1 
4 7.65 15,00 2B2 2Bz -75.5078 +1.7 
5 170.0 1.875 2A 1 2A 1 -75.7648 +1.5 

a The root and primary set contained 6 (for 2A1) and 9 (for 2B2) CF's (Table 1). The orbitals 
were approximate natural orbitals (NO's) obtained, as described in the text, for the states 
indicated. The E(0) results quoted for 2A 1 were actually obtained using 2000 out of the 
2085 spatial configurations (corresponding to a threshold of T~10-9hartree) due to 
program limitations. The extrapolation error is defined as E(~0) - E(0), where E(~0) is the 
result of BP-type graphical extrapolation based on T = 20, I0, 5/~hartree. 
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Fig. 4. Extrapolation curves Ex(T) 
for the 2A1 state of the H20 § ion 
with six functions in the reference 
and root sets. The full lines cor- 
respond to the usual Ak procedure 
(case A of Table 3), while the dashed 
lines correspond to the use of the 
renormalized final CI vector 
components in the zero-order pri- 
mary space function used for energy 
contribution estimation (case F). The 
numbers in parentheses are the cor- 
responding secular equation dimen- 
sions 

though the lowest threshold used in the extrapolations was quite small (5 ~har t ree  
compared  to the more  typical 20 i~hartree), the extrapolation errors, ranging f rom 
1.1 to 1.8 mhartree,  were considerably larger than may have been expected, on the 
basis of previous trends. 

The BP-type extrapolation plot for case 1 (first line) of Table 2 is shown in Fig. 4 
(full lines). The reason for the larger extrapolation error is seen to lie in the rather 
sharp drop in the plots very near the zero-threshold value. The same data is 
plotted as E(T)  vs. AEr(T)  in Fig. 5, and it is seen that the computed points do not 
lie on an approximately straight line, and that significant extrapolation errors 
would remain even at rather low thresholds. In fact, a linear fit to the points at 
T = 20, 10, 5 i~hartree gives an extrapolation error of 1.9 mhartree.  Essentially 
the same behavior  is found for the other calculations in Table 2. 

In order to explore the reasons for the extrapolation difficulties described 
above, a series of additional calculations were carried out for the first example of 
Table 2. The results of these experiments are summarized in Table 3. These 
calculations explore the effects of changes in the size of the root set (the set of CF's  
used to generate the preselected list of CF's) and /or  the pr imary set (used as the 
zero-order  CF's  for the estimation of energy contributions). 

Case A in Table 3 corresponds to the original calculation (case I of Table 2). Case 
B explores the effect of augmenting both the root set and pr imary set to include all 
other CF's with coefficient magnitudes which exceeded 0.03 in case A. The 
extrapolation curves obtained in this experiment  are similar to those of case A, 
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Table 3. Extrapolation errors for the 12A1 state of the H20 + ion with different 
choices of the root and primary sets a 

91 

Root Primary Preselected Extrapolation 
set set set E(0) error 

Case size size size (hartrees) (mhartrees) 

A 6 6 6182 b -75.5560 b +1.5 
B 33 33 20138 c -75.5613 c +1.1 
C 3 3 3339 -75.5550 +0.7 
D 1 1 1342 -75.5522 -0.3 
E 6 33 6182 b -75.5560 b +0.3 
F d 6 6 6182 b -75.5560 b +1.5 

"The geometry and orbitals correspond to case 1 of Table 2. Set sizes are the 
numbers of CF's in each set. Root sets are used to generate the preselected set, 
while the primary sets are used in ~0 for energy contribution estimates (see text). 
Root sets of 1, 3, 6, and 33 CF's correspond to 1, 2,-5, and 18 spatial 
configurations, respectively. See Table 2 for definition of the extrapolation error. 
b The E(0) result quoted actually corresponds to T ~  10 -9 hartree, using 5983 
CF's (see Table 2). 
c The E(0) result quoted actually corresponds to an extrapolation based on 
T = 20, 10 . . . . .  0.24 vhartree, using a maximum of 7531 CF's. 
o Primary set expansion coefficients taken from final CI vector (see text). 

and  so is the  e x t r a p o l a t i o n  e r ro r  (the z e r o - t h r e s h o l d  ca lcula t ion  could  not  be  
car r ied  ou t  in this case, and  E (0 )  was e s t i m a t e d  f rom an e x t r a po l a t i on  b a s e d  on 
ca lcula t ions  at  T = 20, 10 . . . . .  0.24 ~har t ree ) .  H o w e v e r ,  the  e x t r a p o l a t i o n  e r ro r  
(at T = 20, 10, 5 ~ha r t r ee )  is a smal le r  f rac t ion  of A E r ( T )  in this case, because  of 
the  la rger  size of AEr(T). 

The  fo l lowing two ent r ies  in Tab le  3 exp lo re  the  effect of r educ ing  the size of the  
roo t  and  p r i m a r y  sets first to t h r ee  CF ' s  (case C) and  then  to one  C F  (case D). T h e  
second  and  th i rd  CF ' s  in case C be long  to the  same  spat ia l  conf igura t ion ,  and  have  
a c o m b i n e d  coefficient  of 0.12 in the  final wave  funct ion.  W h i l e  the  e x t r a p o l a t i o n  
e r ro r  is r e d u c e d  in case C, it is still fa i r ly  large  (par t icu la r ly  when  we cons ider  tha t  
A E r ( T )  is sma l l e r  in this than  in the  p rev ious  cases), and  the  shape  of the  
e x t r a p o l a t i o n  curves  is qua l i t a t ive ly  s imi lar  to those  of case A.  H o w e v e r ,  the  use 
of a single roo t  and  p r i m a r y  conf igura t ion  in case D changes  the  s i tua t ion  
m a r k e d l y ,  p r o d u c i n g  a smal le r  ex t r apo l a t i on  e r ro r  (and of o p p o s i t e  sign) and 
resul t ing  in r e l a t i v e l y  n o r m a l  ex t r apo l a t i on  plots  (Fig. 6). 

The  obv ious  ques t ion  is then  w h e t h e r  it is the  size of the  roo t  set  o r  the  p r i m a r y  set 
which d e t e r m i n e s  the  above  behav io r .  This  is e x p l o r e d  in e x a m p l e  E, in which the  
roo t  set  is tha t  of case A ,  bu t  the  p r i m a r y  set is the  3 3 - t e r m  set of case B. T h e  
ex t r apo l a t i on  e r ro r  is seen  to be  cons ide rab ly  smal le r  in this case than  in e i ther  of 
the  cases A and  B, ind ica t ing  tha t  some  ques t ion  of ba lance  b e t w e e n  the roo t  set 
and  p r i m a r y  set  m a y  be  involved .  This  is d iscussed fu r the r  in the  next  sect ion.  

Final ly ,  one  fu r the r  ca lcula t ion  (example  F) was ca r r i ed  out  in o r d e r  to exp lo re  the  
sens i t iv i ty  of the  se lec t ion  process  to the  choice  of p r i m a r y  set  mix ing  coefficients 
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Table 4. Comparison of primary set 
coefficients used in estimating energy 
contributions in cases A and F 
of Table 3 

CF a Case A b Case F c 

1 0.995 0.992 
2 0,078 0.112 
3 -0,020 -0.044 
4 -0.036 -0.018 
5 0.015 0.020 
6 -0.035 -0.028 

a Corresponding to the configuration 
list for 2A1 in Table 1. CF's 2 and 3 
belong to the same configuration. 
b From primary set eigenvector, Eq. 
(4) (Ak procedure), 
r Renormalized coefficients from final 
(unselected) CI eigenvector. 

a,-, Eq. (1), used in the evaluation of the energy contributions. This calculation was 
similar to that of case A, except that the mixing coefficients ai were taken from the 
corresponding components of the final unselected CI eigenvector of case A (and 
renormalized), instead of being obtained from the solution of the primary space 
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Fig. 5. Alternative extrapolation plots 
E(T) vs. AE'(T)  for the examples of 
Fig. 4. The numbers next to the dots are 
the corresponding threshold values (in 
izhartrees) 
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Fig, 6. Extrapolation curves Ex (T) for the 2A l state of the H2 O+ ion with a single root function (case D 
of Table 3), The unselected expansion contained 1342 functions in this case 

eigenvalue problem, Eq. (4). (The two sets of coefficients are compared in Table 
4.) Since this presumably corresponds to the use of a more accurate zero-order  
function for the perturbat ion-theory estimation of the energy contributions of 
secondary CF's, better  selection results may have been expected. The cor- 
responding BP-type extrapolation curves are shown by the dashed lines in Fig. 4, 
and for T-> 5 ixhartree, they are indeed found to be smoother, with a linear and 
nearly horizontal A = 1 curve in this region, and with energies which are lower 
(and closer to the extrapolated limit) than the corresponding points for case A (full 
lines). However,  the sharp dip at smaller T and the resulting extrapolation error 
are still essentially the same as in case A, indicating that the extrapolation 
difficulties are not significantly related to the choice of the primary set mixing 
coefficients in the Ak selection process. (The corresponding E(T) vs. AE'(T) 
curves for the two cases are compared in Fig. 5.) 

5 .  D i s c u s s i o n  

Clearly, the accuracy of the extrapolation procedures depends on how well 
hE'(T), Eq. (7), reflects the actual truncation error E(T)-E(O). It is not 
necessary for AE'(T) to be equal to E(T)-E(O), but successful extrapolation 
requires that the ratio between these quantities be essentially constant as a 
function of T. The use of AE ' (T)  as an estimate of the truncation error is based on 
perturbation theory (Section 2), and assumes that a second order energy expres- 
sion based on a zero-order  function obtained from the primary space eigenvalue 
problem is adequate for that purpose. 

As seen in Table 4, the relative weights of the primary space functions in ~0 in the 
Ak procedure are significantly different from their relative weights in the final CI 
wave function. Furthermore,  the results in Figs. 4 and 5 show that this difference is 
a significant factor in the generation of nonlinear extrapolation plots. But it is also 
clear that this difference is not responsible for the anomalous small-T behavior of 
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those plots. The reason for that behavior must therefore be sought in the use of 
second-order energy contribution estimates in hEr(T). The form of the 
extrapolation plots also indicates that the principal problem is in the energy 
contribution estimates for the large number of CF's with very small estimated 
contributions, primarily those with es -< 1 ~hartree. In fact, the large number of 
small contribution CF's is a principal characteristic of CI expansions which are 
generated from large root sets. An examination of the es values for cases D, C, A, 
and B of Table 3, with root set sizes of 1, 3, 6, and 33, respectively, finds 6, 39, 68, 
and 76 pet cent of them, respectively, to be smaller than 1 p~hartree. 

Obviously, the additional small-contribution CF's in the multiroot expansions 
(A-C) are functions which have no direct interaction with the principal CF (No. 1 
in Table 4). Their energy contribution estimates are therefore obtained from their 
direct interaction with the less important primary CF's. However,  due to the large 
difference in magnitude between the coefficients of these primary CF's and that of 
the principal function, it is quite likely that higher-order (indirect) interactions of 
the small-contribution CF's with the principal function are at least as important as 
their direct, second-order interactions with the other primary functions. Those 
higher-order interactions are ignored in the selection and extrapolation pro- 
cedures, and this must be the principal cause of the anomalies in the extrapolation 
plots. 

Further support for this analysis is provided by case E, in which the primary set 
size of 33 is significantly greater than the root set size of 6. This has the effect of 
including in the energy contribution estimates interactions which would have been 
of higher order in case A, and results in a significantly smaller extrapolation error. 

The principal source of the extrapolation anomalies is thus found in the inclusion 
in the root set of CF's with small coefficients. In most applications, such CF's 
would not be included in the root set, and no difficulties should then be encoun- 
tered in the extrapolations. However,  the inclusion of such functions in the root 
set is sometimes desirable for reasons extraneous to the selection and extrapola- 
tion process. This happens, for example, when more than one electronic state of a 
given symmetry are to be studied simultaneously [10, 11] or, in some cases, when 
potential curves or surfaces with correct dissociation behavior or with accurate 
relative positions [ 18] are to be determined. In such cases it appears that improved 
extrapolation behavior can be restored by the use in the energy contribution 
estimation of a primary CF set which is substantially larger than the root set. 

The use of larger primary sets can substantially increase the matrix element 
computation time in the selection process. In the present example, 60% more 
central processor time was used in the selection stage in case E compared to case 
A. However,  the selection stage generally accounts for a relatively small fraction 
of the total CI computation effect, and thus the above increase is not particularly 
significant. 

It should be abundantly clear that this study is concerned solely with extrapolation 
accuracy, not with the effect of root set size on the corresponding E(0) total 
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energies. In any actual application, the importance of root set choice may greatly 
exceed the significance of the extrapolation errors, but it is still important to be 
aware of the magnitude and causes of such errors. This may be particularly 
important in those cases in which the relative positions of close-lying electronic 
states (or different regions of a potential surface) are of primary interest. 

It should also be noted that several alternative approaches to the reduction of 
computational effort in CI calculations, often based on the Bk method of 
Gershgorn and Shavitt [5] and its extensions, have been advocated and used [1, 
2s-31]. 

6. Summary 

Configuration selection has been an important tool in large-scale CI calculations. 
Buenker and Peyerimhoff have demonstrated that extrapolation can greatly 
enhance the effectiveness of that tool, often producing results which are within 
0.5 mhartree or the unselected (zero threshold) energy. It has been shown here 
that the accuracy of the extrapolation is sensitive to the choice of the root set, the 
set of configuration functions used to generate (by single and double excitations) 
the preselected configuration list. Quite apart from the question of the effect of the 
root set choice on the T = 0 (unselected) energy, it is seen that unexpectedly large 
extrapolation errors can result if that root set contains relatively unimportant 
functions. 

The root set is usually chosen on the basis of criteria (such as correct dissociation 
behavior or the needs of other electronic states) which have nothing to do with the 
extrapolation process. Second-order energy expressions used in the estimation of 
energy contributions do not provide reliable estimates for functions which interact 
directly only with minor components of the root set, since their ignored higher- 
order, indirect interactions with the major components may be considerably 
greater than their small estimated contributions. This leads to steep drops in the 
extrapolation curves at low threshold values and significantly increased 
extrapolation errors. Improved extrapolation accuracy can be restored in such 
cases by increasing the size of the primary set, the set of CF's which make up the 
zero-order function in the energy contribution calculations, well beyond the size 
of the root set. 
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